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Abstract
A fluid of rod–coil diblock copolymers, modelled as wormlike chains, is
treated by using self-consistent field theory. The ‘rod’ and ‘coil’ sections of
each molecule are distinguished by their degrees of flexibility (or persistence
lengths), but are otherwise identical. Interactions between molecules are taken
to be of the excluded-volume type, described by the Onsager second-virial
approximation. The theory is applied to liquid-crystalline phases which are
either uniform (i.e., isotropic and nematic) or exhibit a uniaxial one-dimensional
spatial variation (smectic-A). This work extends an earlier study (Düchs and
Sullivan 2002 J. Phys.: Condens. Matter 14 12189) to account for the smectic-
A phase at arbitrarily large values of the relative rod fraction. The smectic
phase is found to have a partial bilayer morphology, exhibiting nearly complete
interdigitation of the rod-like sections and little interdigitation of the coil
sections.

Fluids of rod–coil diblock copolymers, each consisting of a rigid-rod block bonded to a flexible
coil block, exhibit a rich self-assembly and phase behaviour and have attracted extensive
experimental [1–5] and theoretical [6–10] interest. Most of the theoretical studies have
employed both a rod–rod steric interaction (which induces liquid-crystalline ordering of the
rods) and a Flory–Huggins rod–coil interaction which favours segregation of the rod from
the coil components. An alternative model was recently introduced [11], which considered
only steric (excluded-volume) interactions between all components of the molecules and
distinguished the ‘rods’ from ‘coils’ by their differing degrees of flexibility4. While this
athermal repulsive-interaction model is more directly applicable to lyotropic colloidal systems,
such as suspensions of viral particles [14, 15], it can be extended to take account of attractive
interactions [13]. When the relative fractions of rod and coil segments are comparable, the

4 A closely related diblock model has been described by Wessels and Mulder [12] which considers that all components
of a molecule (modelled as a freely jointed chain) have the same flexibility while distinguishing the two block
components by their lengths and diameters.
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theory in [11] was shown to produce lamellar smectic-A phases, somewhat analogous to
the occurrence of microphase separation in other models of diblock copolymers [12, 16].
Moreover, the results presented in [11] were in agreement with a density-functional treatment
by Holyst [17] of rigid ‘nail-shaped’ molecules, and with Monte Carlo studies by Mazars et al
[18] of short molecules containing a rigid core and a semiflexible tail.

The study in [11] was based on the wormlike chain model [19] for spatially nonuniform
fluids of semiflexible polymers. This is a widely used coarse-grained model for such polymers,
neglecting chemical details of the monomers making up a polymer chain and representing a
macromolecule by a continuously deformable elastic filament. Following the work of Semenov
and Khokhlov [13], excluded-volume interactions between molecules were treated within the
Onsager second-virial approximation, while the model was studied by using a well-established
self-consistent field theory (SCFT) formalism [16, 20–23]. The SCFT treatment of smectic
phases in [11] was limited to systems having comparable fractions of rod and coil segments.
This treatment has been recently extended [24] to examine smectic-A formation in a system
of homopolymers, each having a uniform degree of rigidity. It was shown that a contribution
(omitted in [11]), due to excluded-volume interactions between ‘terminal’ chain segments and
interior segments, can also provide a physical mechanism that leads to formation of smectic
phases. The aim of the present work is to apply the extended model [24] to rod–coil diblock
molecules.

We consider a monodisperse fluid of n rod–coil diblock copolymers, each of total contour
length L and diameter D, occupying a total volume V . The molecular number density n/V is
denoted ρ. A fraction f of the total contour length of each copolymer is occupied by relatively
rigid (rod) segments, and the remaining fraction by more flexible (coil) segments. In accord
with the wormlike chain model for semiflexible chains [16, 19–23, 25, 26], a polymer is treated
as a space curve r(t) characterized by dimensionless unit tangent vectors u(t), with t varying
between 0 and 1. We will use the (arbitrary) convention that the range 0 < t < f is occupied
by rigid segments, and the remainder by flexible segments. Here f is regarded as a parameter,
and later we will present a phase diagram of the system in terms of f . The rigid and flexible
blocks are distinguished solely by their values of the rigidity parameter ξ(t) depending on the
contour variable t , which equals the persistence length of the corresponding chain section in
units of the total contour length L [16]. This is where the difference between the rigid and
flexible blocks of the copolymers enters.

In mean field theory, the Helmholtz free energy functional of the system is given by

βF = βFint +
∫

D{r,u}ρm ({r,u}) [ln(ρm({r,u}))+ βU({r,u})− 1] . (1)

Here ρm({r,u}) is the single-molecule probability distribution function, which satisfies the
normalization condition,∫

D{r,u}ρm({r,u}) = n, (2)

where the notation {r,u} stands for the position r and orientation u of all segments of a
chain molecule [24]. The function Fint in equation (1) is the contribution of intermolecular
interactions to the free energy, while U({r,u}) accounts for all ‘one-body’ potentials, including
those due to internal bond-bending energies plus any external fields.

As in [11], we assume that the interactions between any type of segment (either rod-like
or coil-like) are the same. Following [13], based on the Onsager second-virial approximation
for excluded-volume interactions between molecules, the free energy due to these interactions
can be derived on representing a wormlike chain by a sequence of L/λ linear segments of
length λ, where the latter length is much smaller than the corresponding persistence length.
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The interaction free energy is then given by, independent of λ [24]5:

βFint = ρ2

2

∫
dr

∫
du

∫
du′ V (u,u′)φ(r,u)φ(r,u′)

+ ρ2
∫

dr
∫

du
∫

du′ Vce(u,u′)φ(r,u)

× [
ψ(r,u′, t = 0)+ ψ(r,u′, t = 1)

]
. (3)

For any value of t , the function ψ represents the dimensionless segment probability density
defined by

ψ(r,u, t) = 1

ρ

∫
D{r,u}ρm({r,u})δ (r − r(t)) δ (u − u(t)) , (4)

while φ(r,u) is the dimensionless contour-averaged total segment density, related to ψ(r,u, t)
by

φ(r,u) =
∫ 1

0
dt ψ(r,u, t), (5)

which satisfies the normalization condition∫
dr duφ(r,u) = V . (6)

The first term of equation (3) gives the interaction potential between cylindrical segments in a
‘single-contact’ approximation [12], where V (u,u′) is given by (in the Onsager second-virial
approximation) V (u,u′) = 2DL2|u × u′|. The second term of equation (3) is the correction
introduced in [24], accounting for interactions due to overlap between the ‘cylindrical’ bodies
of each molecule (c) with the ‘terminal (or end)’ segments (e) of the other molecules. For
capped spherocylinders, Vce is given by the constant Vce(u,u′) = πL D2/2 [24]. This
interaction favours segregation of the polymer terminal segments from the interior cylindrical
segments, leading to aggregation of each separate type of segment and hence formation of a
smectic phase in a fluid of homogeneous molecules. Its occurrence is analogous to that of
separate ‘head group’ and ‘tail segment’ densities in theories of lipid polymorphism [27, 28].

The equilibrium distribution function is obtained by minimizing F with respect to
ρm({r,u}), subject to the constraint in equation (2), which as usual can be taken into account
by means of a Lagrange multiplier. The functions ψ(r,u, t) and φ(r,u) can be expressed in
terms of conditional chain-end distribution functions or propagators q(r,u, t) and q†(r,u, t)
as

ψ(r,u, t) = V

Q
q(r,u, t) q†(r,u, t), (7)

where Q is the single-molecule partition used for satisfying equation (6). As shown in [24], the
resulting diffusion-like equations for the propagators q(r,u, t) and q†(r,u, t) have the same
form used in earlier theories [11, 16, 25], namely

∂

∂ t
q(r,u, t) =

[
−Lu ·∇r + 1

2ξ(t)
∇2

u − w(r,u)
]

q(r,u, t), (8)

∂

∂ t
q†(r,u, t) =

[
−Lu · ∇r − 1

2ξ(t)
∇2

u +w(r,u)
]

q†(r,u, t), (9)

5 Since repulsive excluded-volume interactions between molecules are explicitly included in this model, we do not
impose an ‘incompressibility’ condition to account for hard-core packing effects.
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Figure 1. Phase diagram for rod–coil copolymers, for L/D = 10. Solid lines correspond to first-
order transitions, while the second-order part of the nematic–smectic transition is indicated by the
dashed line.

where the ‘mean field’ w(r,u) is given by

w(r,u) = ρ

∫
du′ V (u,u′)φ(r,u′)+ ρ

∫
du′ Vce(u,u′)

[
ψ(r,u′, 0)+ ψ(r,u′, 1)

]
. (10)

The initial conditions on the propagators q(r,u, t) and q†(r,u, t) are

q(r,u, t → 0) = q†(r,u, t → 1) = e−wq (r,u), (11)

where

wq(r,u) = ρ

∫
du′ Vce(u,u′)φ(r,u′). (12)

Our solution of these self-consistent equations involves expansions of the various densities
and fields in spherical harmonics. More details about the calculational procedure, for a uniaxial
one-dimensional spatial variation, can be found in [11] and [24].

Here we present results for a fluid of copolymers with ξrigid ≡ ξ(0 < t < f ) = 10 and
ξflex ≡ ξ( f < t < 1) = 0.1. In our calculations, we hold the value of the aspect ratio fixed at
L/D = 10, while varying the rod fraction f from f = 0.45 to 1.0. The overall number density
is expressed in terms of the volume fraction η defined by [29]

η = πρL D2

4

(
1 + 2

3

D

L

)
. (13)

The phase boundaries of this model are shown in figure 1 in terms of the volume fraction η and
the parameter f . These phase boundaries are reflected by changes in the equilibrium structure
indicated by the probability density ψ . The coexistence regions of first-order transitions have
been obtained by applying double-tangent constructions to curves of the free energy per volume
βF/V versus η [24]. On the other hand, for large L/D when f = 1 (see [24]) and over a wide
range of f < 1 in the present case of L/D = 10, the nematic–smectic (N–A) transition is
found to be second order. In these cases, the location of the N–A transition line ηc versus f
was determined from the behaviour of the smectic order parameter Osm defined in [11], by
fitting this with a power law in the vicinity of ηc [24]

Osm ∼ (η − ηc)
1
2 . (14)
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In the smectic phase, the densitiesψ(r,u, t) and φ(r,u) are periodic functions of z with period
denoted d . For this phase, all phase-boundary calculations employed the equilibrium value of
the period, i.e., the value of d which minimizes the free energy per volume.

In the phase diagram of figure 1, we note that all values of f > 0.45 are accessed, in
contrast with [11]. At low volume fraction η, the weakness of the orientational interactions
favours a disordered isotropic phase. A first-order isotropic–smectic transition is found for
molecules which are predominantly flexible ( f < 0.53). This splits into separate isotropic–
nematic and nematic–smectic branches for f > 0.53. The nematic to smectic phase transition
occurs at higher values of η. For smaller values of f , this transition is first order, while it
becomes second order following a tricritical point at f ≈ 0.7. The solid and dashed lines in
figure 1 define the first-order and second-order regions of this transition, respectively. In all
cases, the optimal smectic periods are in the interval 1.04 < d/L < 1.24. On increasing η at
fixed f in the smectic phase, the equilibrium value of the period undergoes little change, while
it notably increases on going from relatively flexible molecules ( f = 0.45; d/L = 1.04) to
rigid ones ( f = 1; d/L = 1.24).

The occurrence of the isotropic phase at low volume fraction in figure 1 contrasts with an
assumption used in many previous theoretical studies [6, 8, 10] (exceptions are [7, 9]), where
an oriented nematic state is the reference uniform phase. For small rod fraction f , we find
only a direct isotropic–smectic-A transition. Experimentally, this is a region where smectic-C
and related ordered morphologies not considered in this work, as well as disordered micellar
structures, have been found [2–4]. Figure 1 shows that there is a weak minimum in the nematic–
smectic-A phase boundary of η versus f , as found earlier [11]. This is analogous to a general
trend found in thermotropic rigid–flexible liquid crystals, as summarized in [30], as well as in
rod–coil copolymers [9]. As f → 1, the nematic–smectic phase boundary approaches that for
homogeneous semiflexible polymers obtained in [24].

In the remainder of this paper, we focus on the structure of the smectic phase, as revealed
by the probability distribution function ψ(z, uz, t), where uz ≡ cos(θ) and θ is the angle
between a segment axis and the z axis. The distribution function is plotted versus z (over one
period) and uz at several values of t in figures 2(a)–(e), indicating the density of segments at
the point t along a chain in terms of the segment position z and orientation uz . These figures
describe the case f = 0.5 and volume fraction η = 1.4, well into the smectic region of the
model, with corresponding equilibrium period d = 1.08L. Qualitatively similar behaviour is
found at all other values of f and η. We see that, for the rigid sections of the molecule (t < f )
(figures 2(a)–(c)), the segment orientations are very strongly peaked parallel or antiparallel to
the z-axis (i.e., values of uz = ±1 are favoured). A much weaker orientational anisotropy is
indicated for the flexible segments (figures 2(d) and (e)).

Several features of figure 2 indicate that the smectic-A phase has the morphology of
a partial bilayer structure. First, figure 2(a) shows that the maxima in the distributions
ψ(z, uz , t = 0) (i.e., at the rigid terminals) in opposite orientations uz = ±1 are separated
by slightly less than half a period d (more precisely, by an amount 0.42d = 0.45L, which
is slightly smaller than L/2, the length of the rigid part of each molecule), indicating
almost complete interdigitation of the rigid cores in opposite orientations. This conclusion is
reinforced by figure 2(b) for t = 0.25, i.e., at the mid-points of the rigid parts, whose maxima
in opposite orientations are at nearly equal values of z, that for uz = 1 being at slightly larger
z than that for uz = −1, by about 0.02d . In figure 2(c), at the junction points t = 0.5 between
rigid and flexible parts, there again is a wide separation (0.48d = 0.52L) between maxima
in opposite orientations, slightly larger than the length of the rigid part. We also see that the
maximum in the distribution of junction points (t = 0.5, figure 2(c)) in one orientation is near
the maximum in the distribution of the t = 0 points in the opposite orientation, consistent with
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Figure 2. The distribution function ψ(z, uz , t) of a smectic configuration with f = 0.5, for
segments at different values of t , corresponding to a packing fraction η = 1.4, where the equilibrium
period d = 1.08L .

nearly complete interdigitation of the rigid molecular cores in opposite orientations. This
is shown schematically in figure 3, where perfect alignment of the rigid cores is assumed
for simplicity, and agrees with computer simulation snapshots of the configurations of short
rigid–flexible molecules with purely hard-core interactions [31].

On the other hand, the flexible tails show negligible interdigitation, in contrast with the
earlier interpretation of [11]. This is first shown by the distribution ψ(z, uz, t = 1) of the
flexible terminals (see figure 2(e)), which is nearly symmetrical with respect to the orientation
uz , having maxima at almost identical (within numerical resolution) values of z for all values
of uz . Next, unlike the behaviour of the distribution of the midpoints of the rigid segments,
the maxima of the midpoints of the flexible segments at t = 0.75 (figure 2(d)) in opposite
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Figure 3. Schematic diagram of the conformation of a partial bilayer deduced in this work. For
simplicity, the rigid parts of the molecules are assumed to be perfectly aligned.

(This figure is in colour only in the electronic version)

orientations have a significant separation, which we find to be 0.24d = 0.26L (now with the
maximum for uz = −1 being at larger z). We find that the overall end-to-end distance (between
t = 0.5 and 1) of the flexible parts of any single chain in its most favourable orientation is
slightly greater than this, 0.263d = 0.284L. The fact that this distance is considerably smaller
than the contour length L/2 of the flexible tails implies that the tails are significantly contracted
due to bending fluctuations, rather than being interdigitated, as sketched in figure 3.

The finding that the smectic-A phase has a partial bilayer structure is consistent with that
of [11], although the present results (interdigitation of the rod domains and a bilayer structure
of the coil domains) are stronger than those deduced in [11]. We attribute this difference to the
additional excluded-volume interactions contained in the present model. Such partial bilayer
structures are not considered in earlier theories [6, 8], but are consistent with some of the
structures observed experimentally in [2].

The main limitation of this work is its basis in the second-virial treatment of excluded-
volume interactions, as noted previously [11, 24]. For example, this yields values of the volume
fraction η at the smectic phase boundaries in figure 1 which are beyond those expected at
physical close packing. High-density corrections beyond the second virial will be examined
in future, as well as alternative numerical treatments, as the present treatment limits the study
to small aspect ratios L/D � 10. In addition, it will be interesting to apply this model to
liquid-crystalline phase transitions in confined geometries, as we have done recently in the case
of homopolymers [32], a topic which is relevant to DNA packaging in viral capsids [33].
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